Transition Capacitance and Diffusion Capacitance of Diode

November 18, 2018 Engineeering Projects

Transition Capacitance CT of Diode (Space Charge Capacitance)

With the increase of magnitude of reverse bias, majority carriers move away from the junction i.e. the width W of the depletion layer increases. These uncovered immobile charge on the two sides of the junction constitute a capacitor of incremental capacitance C_T given by,

$$C_T = \left| \frac{dQ}{dV} \right|$$

Where dQ is the increase in the charge resulting from an increase dV in voltage.

Hence, a voltage change dV in the time interval dt will result in a current i given by,

$$i = \frac{dQ}{dt} = C_T \frac{dV}{dt}$$
.....(2)

This capacitance C_{τ} is called the transition capacitance or space charge capacitance or barrier capacitance or depletion layer capacitance.

 \underline{C}_{T} forms an important parameter of the junction. However, \underline{C}_{T} varies with the magnitude of the reverse bias. More the magnitude of the reverse bias greater is the width W of the depletion layer and smaller is the transition capacitance \underline{C}_{T} .

Figure 2: Forward Biased PN Diode

$\underline{C_{T}}$ in a Step Graded Junction:

<u>A junction is said to be step graded if there is an abrupt change from acceptor ion density on the P-side to donor ion density on the N-side. Such a junction gets formed in alloyed junction (or Fused Junction) diode. In general, the acceptor density N_A and the donor density N_D are kept unequal. The transition capacitance C_T is then given by,</u>

$$C_T = \frac{\epsilon A}{W}$$

<u>Where</u> ϵ is a absolute permittivity of the semiconductor medium, A is the cross-sectional area of the junction and W is the of the depletion layer and is given by,

$$W^{2} = \left[\frac{2\epsilon V_{j}}{q}\right] \left[\frac{1}{N_{A}} + \frac{1}{N_{D}}\right]$$
.....(4)

In case N_A>>N_D,

$$W = \left(\frac{2\epsilon V_j}{N_D q}\right)^{\frac{1}{2}}$$

$$\underline{}_{\underline{\text{Hence}}}C_T = A(\frac{N_D}{V})^{\frac{1}{2}} \times (\underline{}$$

Thus, in a step graded junction, C_{τ} is inversely proportional to square root of junction voltage V_i where V_i is given by,

$$V_j = V_o - V_d$$

Where V_d is a negative number indicating the applied reverse bias and V_d is the contact potential.

C_{T} in a Linear Graded Junction

<u>A junction is said to be linear graded if there is a linear variation of net charge density with distance in the transition region. Such a junction gets formed in a frown junction diode.</u>

In such a junction diode also, the transition capacitance is given by,

$$C_T = \frac{\epsilon}{\mathbf{r}}$$

Thus, the expression for C_T for linearly graded junction is the same as for step graded junction.

However, in this case, assuming $N_A = N_D$, the width W of the depletion layer is given by,

Hence,

$$C_T = A\left(\frac{N_D}{V}\right)^{\frac{1}{2}} \times \left(\underline{\qquad}\right)$$

Thus, in this case also, C_T is inversely proportional to the square root of V_i.

Diffusion Capacitance or Storage Capacitance C_D

In the forward biased diode, the potential barrier at the junction gets lowered. As a result, holes get injected from the P-side to the N-side and electron get injected from the N-side to the P-side. These injected charges get stored near the junction just outside the depletion layer, holes in the N-region and electrons in the P-region. Due to charge storage, the voltage lags behind the current producing the capacitance effect. Such a capacitance is called diffusion capacitance or storage capacitance C_{D_2} .

The diffusion capacitance C_D may be defined as the rate of change of injected charge with voltage,

Thus,

$$C_D = \frac{d}{d}$$

But, in a forward biased diode with one region say P-region very heavily doped relative to the other region (N region), current (I) is mainly due to holes. Then (I) is given by,

$$I = \frac{\zeta}{2}$$

Where Q is the stored charge and $T_{p \text{ is the mean lifetime of hole and is given by,}}$

$$T_p = \frac{L}{L}$$

Where L_P is the diffusion length for holes, and D_P is the diffusion constant for holes.

Combining Equation (11) and (12), we get

$$C_D = \tau \frac{dI}{\pi r} = \underline{\qquad}_{(14)}$$

But from equation of dynamic resistance $r \approx \frac{\eta V}{r}$. Substituting this value of r in equation (14) we get,

$$C_D = \frac{\tau}{n!}$$

In a general case, diffusion constant C_D is caused by diffusion of both the holes in the n-regions and electrons in the P-region, resulting in diffusion capacitance C_{D_p} and C_{D_n} respectively. The total diffusion capacitance C_D is the sum of C_{D_p} and C_{D_n} .

 $C_{\rm p}$ may have value of a few thousand of pF. This time constant $C_{\rm p}$, r mainly limits the frequency response of certain semiconductor devices when used in high frequency applications.

In fact in a forward diode, there are present both the diffusion capacitance $C_{\rm D}$ and the transition capacitance $C_{\rm T}$, but $C_{\rm D} >> C_{\rm T}$. Typically, C_D is more than a million times greater than C_T. Hence, in a forward biased diode, C_T may be neglected and we need consider only C_D.

Similarly, in reverse biased diode, these are present both C_{p} and C_{T} . But $C_{p} \leq < C_{T}$. Hence, in a reverse biased diode, we may neglect C_D and we need consider only C_T .

For forward biased Ge diode $(\eta = 1)_{\underline{, at}} I = 13mA_{\underline{, r}} = 2\Omega_{\underline{and then}} C_D = 0.5\tau_{\underline{, For}} \tau = 20\mu s$ $C_D = 10 \mu F$